Radiation Safety for Dental Auxiliaries Susan Grammer

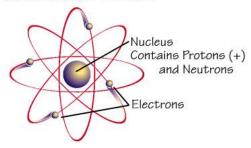
Course Content

- 1. Radiation History and the Use of Radiographs
- 2. Introduction to Physics
- 3. X-ray Machine and Production of X-Rays
- 4. Radiographic Film and Processing
- 5. Radiation Biology
- 6. Radiation Safety
- 7. Intra-Oral Radiographic Techniques
- 8. Introduction to Panoramics

1. Radiation History and the Use of Radiographs

A. Outline- History

- Discovered in 1895
 - Wilhelm Roentgen
 - Recorded on photographic plates
 - Public reaction and Medical Uses
- Dangers of X-rays
 - C. Edmund Kells
 - X-ray properties
- Advances
 - Safety equipment
 - Film
 - Digital


B. Use of Radiographs

- Why?
 - Used in diagnosis, treatment planning, monitoring disease, provide information during procedures
- Intraoral radiograph- high detail, limited area
 - Periapical radiograph- "around the apex" crown, root and 3mm around apex
 - Occlusal radiograph- impacted/embedded teeth, foreign bodies, fractures, salivary stones, large tumors or lesions
- Extraoral radiograph- additional information is needed
 - Panoramic- most common
 - Cephalometric
 - PA skull, Waters, TMJ, CT

- Radiographic Selection Criteria
 - Dental Caries
 - Periodontal Disease
 - Other conditions

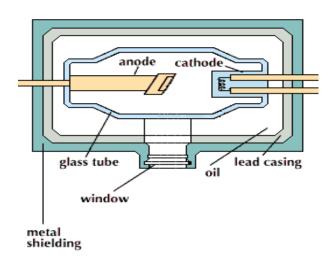
2. Introduction to Physics

Structure of An Atom

- Atomic Structure
 - Structure of atom
 - Ionization- collision events,
 - effects of ionization

- Types of Radiation
 - Electromagnetic and Particulate
 - Electromagnetic spectrum
 - Properties of Electromagnetic Spectrum
 - Specific Properties of X-Rays

3. X-Ray Machine and Production of X-Rays


A. Components of X-Ray Equipment

- Supporting Arm
- Control Panel
 - 1. on/off switch
 - 2. Milliamperage selector (mA)
 - 3. Kilovoltage selector (kVp)
 - 4. Timer

- 5. Exposure switch- "dead man"
- 6. X-ray emission light and audible signal

Tube Head

- Cathode-(-) tungsten filament
- Anode- (+) tungsten target, copper sheath
- Transformers
- Oil
- Tube housing- metal
- Filtration
 - 1. inherent
 - 2. added
- Collimation

B. Production of X-Rays

- Step by Step Tube head
 - 1. Operator turns on machine and sets exposure factors (mA, time, kVp)
 - 2. Operator holds down exposure button
 - 3. Step-down transformer reduces 110 or 220 volts to 3 to 5 volts
 - 4. Filament heats up- mA tells how many electrons to produce- thermionic emission
 - 5. Step-up transformer (65 to 90 kVp) accelerates electrons to anode target
 - 6. X-rays leave the glass tube filtered to remove long wavelength, collimated to reduce size of beam, guided through PID (cone)
 - 7. Produces 1% radiation

• Types of Radiation

- a. Leakage Radiation
- b. Primary Radiation
- c. Scatter Radiation
- d. Remnant Radiation
- e. Secondary Radiation

4. Radiographic Film and Processing

A. Image concepts

- Definitions-
 - 1. Image receptor- physical media affected by x-rays and produces an imagefilm, digital sensor
 - 2. Latent image- invisible image
 - 3. Visible image- latent image converted to visible image by chemicals
- Film
 - -transparent plastic base
 - radiation sensitive silver bromide emulsion
 - lead foil- protects film from "backscatter radiation"
 - black paper
 - embossed dot- tells right from left
- Film Sizes
- #0- periapical and bitewing for small children
- #1 anterior periapical adult
- #2 periapical and bitewing adults
 Occlusal view for small children
- #3 bitewings (seldom used)
- #4 occlusal views

Digital Sensors- pixel based

B. Characteristics:

- Film Sensitivity- speed- size of crystals
- Density- degree of darkening
- Contrast- differences in density
- Sharpness or definition

C. Film Handling and Storage

Radiographic film is sensitive to a number of variables

- Improper handling- pressure sensitive- fingernails, bending, dirt, chemical spills
- Heat and humidity- should not be stored at temperatures above 68 F
- Should be stored between 40% and 60% humidity
- Should be stored and handled in darkroom
- Radiation- fog from scatter radiation
- · Age- expiration date- indicates maximum shelf life

D. Darkroom Chemistry and Processing

- Steps in Chemical Processing
 - 1. Develop
 - 2. Rinse
 - 3. Fix
 - 4. Wash
 - 5. Dry
- Developer:
 - Time/Temperature Method- brings out image
 - Softens and swells emulsion
 - Principle components- Hydroquinone- produces black tones
 Elon- produces grey tones

- Fixer:
 - removes unexposed and undeveloped silver bromide crystals
 - Stops developing action
 - Hardens emulsion to prevent damage
- Automatic processing- series of rollers, concentrated chemicals
 Shortened processing time
- Safe Light-safe illumination
 - Safelight and distance- 4 feet from working area
 - Safelight and time- limited working time
 - Safelight and filter- manufacture recommendation
 - Safelight and wattage- recommended is 15 watts
- Coin test for: safelight problems, light leaks

5. Radiation Biology

I. Basic Interactions of X-Rays:

A. No interaction

- X-rays pass through
- Radiolucent area on radiograph (dark space)
- Structures that are easily penetrated- soft tissue, pulp

B. Attenuation

- 1. Photoelectric Absorption- radiopaque- bone, metal
 - Results in production of photoelecton and secondary radiation- both are poorly penetrating and completely absorbed
 - Accounts for most interactions in dental radiology

2. Scattering

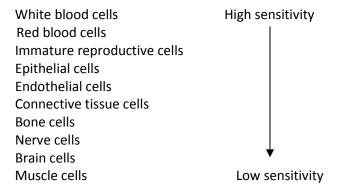
- Absorption of x-ray and re-emission of x-rays at angles
- Reaches the film and produces fog
- Majority of genetic and somatic exposure and can be hazardous to operator
- Compton scatter- x-rays are deflected and reduced in energy (long wavelength)

II. Mechanism of effects

A. Atomic level-

- energy transfer from ionizing radiation to atoms of biologic tissues
- ionization- loss of electron leaves atom with positive charge

B. Molecular level-


- Direct effect- occurs when molecules such as DNA, RNA, proteins, etc receive energy directly from the incident radiation
- Indirect- occurs as result of ionization of water in cell- forms toxin and damages cell

C. Cellular level-

- Somatic cells- all cells of the body except genetic
- Genetic cells- reproductive cell
- Mechanisms- direct or indirect damage
 - Cell death
 - Disruptions in cell growth
 - Permeability changes
 - Changes in cell motility

D. Tissue level

- Law of Bergonie and Tribondeau
- Cell sensitivity
 - Actively dividing cells are more sensitive than slowly dividing cells
 - Cell is most sensitive during mitosis (cell division)
 - Immature cells are more sensitive than mature cells

E. Organ level

 Critical Organ Concept- certain organs more susceptible to radiation

III. Factors that Determine Radiation Injury

- Total Dose
- Dose Rate
- Area exposed
- Cell sensitivity
- Age

IV. Sequence of Events following Radiation Exposure

- A. Latent period
- B. Period of injury
- C. Recovery period

V. Radiation Effects in Dentistry

- **A. Stochastic Effects** when the dose of radiation is increased, the "probability" of the effect increases, but not its severity
 - Cancer
 - Genetic mutations
- **B. Deterministic Effects** effects that increase in severity with increasing absorbed dose
 - Erythema (reddening of the skin)
 - Epilation (loss of hair)
 - Cataract formation

C. Short and long term effects:

- 1. Short term are seen minutes, days, months after exposure
 - ARS- Acute Radiation Syndrome- If dose is arge enough (usually over 100 rads, whole body)
 - ARS- erythema, nausea, vomiting, diarrhea, hemorrhage
- 2. Long term effects are seen years after exposure
 - Cancer, birth defects, cataracts, genetic mutations

VI. Patient concerns about Radiation-Risk

- A. Biological risks in dental radiation are low compared to medical, but patients may be concerned
- B. Risks compared to: Background radiation-sources of background radiation

Area of exposure:

- Whole body High dose
- Whole body- Low dose
- Limited area- High dose
- Limited area- Low dose

6. Radiation Safety and Protection

I. Concepts in Radiation Protection

- A. ALARA principle- As Low As Reasonably Achievable
- B. Risk vs Benefit

II. Patient Protection

A. Prescribing radiographs

- ADA and FDA guidelines- recommendations for prescribing dental radiographs
- Every patient is evaluated for radiographs on an individual basis
- Every exposure must be clinically indicated
- No radiograph should be taken unless used for diagnostic purposes

B. Proper Equipment

- 1. Filtration
- Added filtration- Aluminum filters to remove long wavelength, low energy radiation
- Inherent filtration- glass window, insulating oil, tubehead seal
- Total filtration- State and Federal laws require total filtration (added +inherent) to have 1.5 mm aluminum for x-ray machines operating at or

below 70 kVp and 2.5 mm of aluminum for all machines operating above 70 kVp

2. Collimation

- Lead plate with a hole where x-ray beam exits the tubehead
- Used to restrict the size and shape of the x-ray beam
- May be round or rectangular depending on shape of the opening of the cone
- Beam must be no larger than 2.75 inches at patient's face

3. Position Indicating Device (PID) or cone

- Extension of x-ray tubehead used to direct the beam
- 3 types- conical, round and rectangular
 - Conical no longer used in dentistry because of production of scatter radiation
 - Rectangular- most effective in reducing patient exposure

4. Thyroid collar

- lead shield used to protect thyroid gland from scatter radiation
- is recommended (not mandated) for all intraoral exposures- esp in small children and adults with thyroid disorders
- not recommended for extraoral exposures since it obscures information

5. Lead apron

- flexible shield placed over chest and lap to protect reproductive organs from scatter radiation
- recommended for intraoral and extra oral –placed on back during panoramic exposures)
- lead free with alloy sheeting are available

6. Fast film

- most effective method of reducing patient exposure to radiation
- F-speed film is the fastest intraoral film available
- Digital imaging is 50 to 90% less exposure to patients than intraoral film

7. Beam alignment devices

 Film or Sensor holders- helps stabilize receptor in the mouth and reduces chance of movement

8. Exposure Factor selection

- Limits the amount of x-radiation exposure a patient receives
- Adjusting the kilovoltage, milliamperage and exposure time

9. Proper technique

- Helps ensure diagnostic quality and reduce amount of radiation to patient
- Images that are non-diagnostic must be retaken which results in additional exposure to patient
- Retakes must be avoided at all times
- Proper film/sensor handling
- Proper film processing/ image retrieval

III. Operator Protection

1. Distance, Positioning and Shielding

- must stand at least 6 feet away from the tube head during exposure
- position at a 90 degree angle from primary beam (travels in straight line)
- protective barriers (several thicknesses of drywall, cinderblock walls, etc)
- NEVER hold a film in place during exposure
- NEVER hold the tube head during exposure
- NEVER hold the patient

2. Monitoring

- Equipment monitoring- quality control
- Personnel monitoring- film badge

3. Radiation Exposure Guidelines

- Radiation Safety Legislation- both state and federal government
- Maximum permissible dose- accumulated lifetime radiation dose for occupationally exposed workers

Formula based on workers age MAD= (N-18) x 5 rems/year

IV. Patient Education

7. Intraoral Techniques

I. Types of Intraoral radiographs

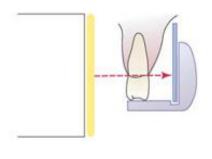
- Periapical- records images of full length of teeth and at least 2mm of surrounding bone
- Bitewing- recomrds crowns and coronal 1/3rd of interproximal bone
- Occlusal- records images of incisal edges of teeth and cross-section of dental arches

II. Intraoral Radiographic Surveys

- Adult FMX-(Dentate) composed of periapical and bitewing radiographs
- Adult FMX-(Edentulous)- composed of two occlusal films and periapical films
- Child- Preschool- composed of 4 molar periapicals, 2 bitewings, and 2 occlusal
- Child- Mixed Dentition- identical to adult FMX, but deleting molar periapicals and molar bitewings

III. Basic Principles in Intraoral Radiography

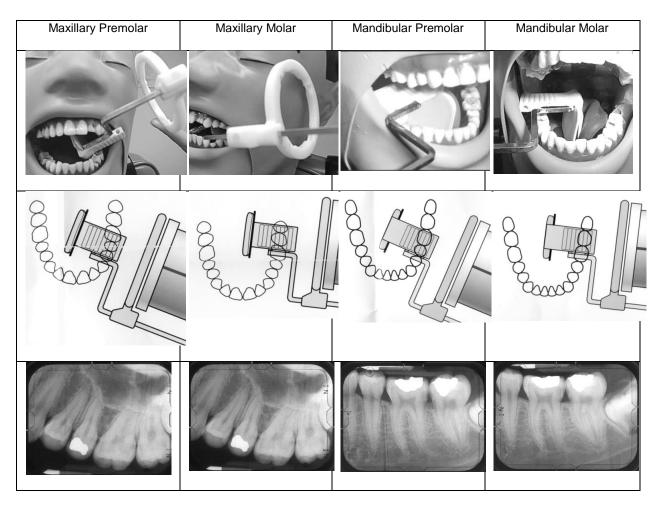
- A. Long axis of teeth
- B. Head position- occlusal plane should be parallel to floor


C. X-Ray beam angulations

- Central ray- imaginary center of x-ray beam
- Long axis- vertical orientation of teeth
- Angulation- direction the x-rays are directed toward the teeth and film
 - Vertical- up and down
 - Horizontal- movement of tube head around patient
 - Point of entry- need to cover the film with the x-ray beam or resulting image will be "cone cut"

D. Paralleling Technique

- Preferred technique- anatomic accuracy- less distortion
- Fundamentals-
 - Must use film/sensor holder
 - Sensor is placed parallel as possible to long axis of tooth
 - Central ray is perpendicular to tooth and sensor
 - Increase object-sensor distance

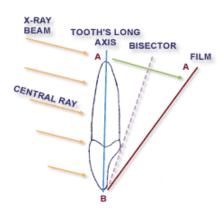


Procedure for Paralleling Technique

- 1. Place sensor in holder and position so it covers prescribed teeth
 - vertical plane- object sensor distance may need to be increased to be as parallel as possible
 - horizontal placement should be parallel to interproximal contacts of teeth
- 2. Direct patient to slowly close on biteblock
- 3. Slide ring to almost contact the skin
- 4. Align cone so it is horizontally parallel with indicator rod and center x-ray beam in ring

Paralleling Technique Using Rinn XCP Equipment

A Division of DENTSPLY International 1212 Abbott Drive Elgin, Illinois 60123-1819 U.S.A. www.rinncorp.com


E. Bisecting Angle Technique

Fundamentals

- Film is positioned at angle to tooth
- Imaginary line bisects the angle
- Align end of cone parallel to imaginary bisecting line

Procedure for Bisecting Angle Technique

- 1. Align patient's head so occlusal plane is parallel to floor and mid-sagittal plane is perpendicular to floor
- 2. Use film holder and center film behind center of teeth
- 3. Direct central ray in vertical position so end of cone is parallel to imaginary bisecting line
- 4. Direct horizontal angulation so central ray does not overlap interproximal areas
- 5. Look to make sure central ray is completely covering sensor

8. Introduction to Panoramics

- **I. Principles** Tomography- body sectioning revealing an image layer and Slit Radiography which is a vertical slit aperture
 - Wide view of upper and lower jaws
 - Positioned outside of mouth
 - Both film and tube head rotate around patient

II. Purposes-

- A. To evaluate impacted teeth
- B. To evaluate eruption patterns, growth and development
- C. To detect disease, lesions and conditions of jaws
- D. To examine extent of large lesions
- F. To evaluate trauma

III. Advantages

- A. Requires less technical expertise
- B. Easily tolerated by patient
- C. Minimal time requirements
- D. Maxilla and mandible on single film
- E. Radiation dose small

IV. Disadvantages

- A. Produces an image that is less sharp- magnification, distortion and poor Definition
- B. Positioning of patient is critical
- C. May not reveal objects that are outside of the focal trough
- D. Requires more expensive equipment

V. Operational Controls

- Time is fixed
- kVp is most common control altered

Pre-Exposure preparation

- sign on to computer and follow instructions if digital or
- load cassette and place into cassette holder
- use proper infection control procedures
- have patient remove all metallic objects from head
- place lead apron on back and front of patient
- do not use thyroid collar
- explain procedure to patient and talk to them during exposure

Positioning for patient

- stand or sits with spine erect
- anterior teeth placed in bite piece groove
- Head planes:

Mid-sagittal- horizontal parallel to floor Occlusal- vertical- parallel to floor Anterior posterior (forward backward) aligned

- Tongue pressed against palate
- Lips closed

VI. Cassettes- Screens- Film

- A. Intensifying screens- emit fluorescent light which exposes the film
- B. Cassettes- rigid or soft

VII. Focal Trough

- A. image layer where structures are well defined
- B. Sharpness location of focal trough
- C. Magnification areas of focal trough

VIII. Panoramic Errors and Ghost Images

A. Characteristics of ghost images

- opposite side of actual object
- same shape as object
- larger than actual object
- projected higher on film
- less distinct (ghostlike)

B. Patient positioning errors

- Too far forward
- Too far back
- Slumped spine
- Mid sagittal plane rotated or tilted
- Chin too high
- Chin too low

C. Patient preparation errors

- Metallic objects left in place- earrings, necklace
- Movement of tongue not raised
- Clothing not removed- hats, hoodie sweatshirts
- Processing errors- static electricity, film handling